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We study the classical problem of planar shock refraction at an oblique density
discontinuity, separating two gases at rest. When the shock impinges on the density
discontinuity, it refracts, and in the hydrodynamical case three signals arise. Regular
refraction means that these signals meet at a single point, called the triple point. After
reflection from the top wall, the contact discontinuity becomes unstable due to local
Kelvin–Helmholtz instability, causing the contact surface to roll up and develop the
Richtmyer–Meshkov instability (RMI). We present an exact Riemann-solver-based
solution strategy to describe the initial self-similar refraction phase, by which we can
quantify the vorticity deposited on the contact interface. We investigate the effect of
a perpendicular magnetic field and quantify how its addition increases the deposition
of vorticity on the contact interface slightly under constant Atwood number. We
predict wave-pattern transitions, in agreement with experiments, von Neumann shock
refraction theory and numerical simulations performed with the grid-adaptive code
AMRVAC. These simulations also describe the later phase of the RMI.

1. Introduction
We study the classical problem of regular refraction of a shock at an oblique density

discontinuity. Long ago, von Neumann (1943) deduced the critical angles for regularity
of the refraction, while Taub (1947) found relations between the angles of refraction.
Later on, Henderson (1966) extended this work to irregular refraction by use of polar
diagrams. An example of an early shock-tube experiment was performed by Jahn
(1956). Amongst many others, Abd-El-Fattah & Henderson (1978a , b) performed
experiments in which also irregular refraction occurred.

In 1960, Richtmyer performed the linear stability analysis of the interaction of
shock waves with density discontinuities and concluded that the shock-accelerated
contact is unstable to perturbations of all wavelengths, for fast–slow interfaces. In
hydrodynamics (HD) an interface is said to be fast–slow if η > 1, where η is the
density ratio across the interface (figure 1), and slow–fast otherwise. The instability
is not a classical fluid instability in the sense that the perturbations grow linearly
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(ρ,    = 0, p, B = (0, 0, Bz), γl)
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(ηρ,   = 0, p, B = (0, 0, Bz), γr)

Figure 1. Initial configuration: a shock moves with shock speed M to an inclined density
discontinuity. Both the upper and lower boundary are solid walls, while the left and the right
boundaries are open.

and not exponentially. The first experimental validation was performed by Meshkov
(1969). On the other hand, according to linear analysis the interface remains stable
for slow–fast interfaces. This misleading result is only valid in the linear phase of the
process and near the triple point: a wide range of experimental (e.g. Abd-El-Fattah &
Henderson 1978 b) and numerical (e.g. Nouragliev et al. 2005) results show that also
in this case the interface becomes unstable. The growth rates obtained by linear theory
compare poorly to experimentally determined growth rates (Sturtevant 1987). The
governing instability is referred to as the Richtmyer–Meshkov instability (RMI) and
is nowadays a topic of research in inertial confinement fusion (e.g. Oron et al. 1999),
astrophysics (e.g. Kifonidis et al. 2006) and the like, and it is a common test problem
for numerical codes ( e.g. van der Holst & Keppens 2007).

In essence, the RMI is a local Kelvin–Helmholtz instability, due to the deposition of
vorticity on the shocked contact. Hawley & Zabusky (1989) formulated an interesting
vortex paradigm, which describes the process of shock refraction, using vorticity as the
central concept. Later on, Samtaney, Ray & Zabusky (1998) performed an extensive
analysis of the baroclinic circulation generation on shocked slow–fast interfaces.

A wide range of fields in which the RMI occurs involves ionized, quasi-
neutral plasmas, where the magnetic field plays an important role. Therefore, more
recently there has been some research done on the RMI in magnetohydrodynamics
(MHD). Samtaney (2003) proved by numerical simulations, exploiting adaptive mesh
refinement (AMR), that the RMI is suppressed in planar MHD, when the initial
magnetic field is normal to the shock. Wheatley, Pullin & Samtaney (2005) solved the
problem of planar shock refraction analytically, making initial guesses for the refracted
angles. The basic idea is that ideal MHD does not allow for a jump in tangential
velocity, if the magnetic-field component normal to the contact discontinuity (CD)
does not vanish (see e.g. Goedbloed & Poedts 2004). The solution of the Riemann
problem in ideal MHD is well studied in the literature (e.g. Lax 1957), and due to the
existence of three (slow, Alfvén, fast) wave signals instead of one (sound) signal, it is
much richer than the HD case. The Riemann problem usually considers the self-similar
temporal evolution of an initial discontinuity, while we will consider stationary two-
dimensional conditions. The interaction of small perturbations with MHD (switch-on
and switch-off) shocks was studied both analytically by Todd (1965) and numerically
by Chu & Taussig (1967). Later on, the evolutionarity of intermediate shocks, which
cross the Alfvén speed, has been studied extensively. Intermediate shocks are unstable
under small perturbations and are thus not evolutionary. Brio & Wu (1988) and
De Sterck, Low & Poedts (1998) found intermediate shocks in respectively one-
and two-dimensional simulations. The evolutionary condition became controversial,
and amongst others Myong & Roe (1997a , b) have argued that the evolutionary condi-
tion is not relevant in dissipative MHD. Chao et al. (1993) reported a 2 → 4 intermedi-
ate shock observed by Voyager 1 in 1980, and Feng & Wang (2008) recognized a 2 → 3
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intermediate shock, which was observed by Voyager 2 in 1979. On the other hand,
Barmin, Kulikovskiy & Pogorelov (1996) argue that if the full set of MHD equations is
used to solve planar MHD, a small tangential disturbance on the magnetic-field vector
splits the rotational jump from the compound wave, transforming it into a slow shock.
They investigate the reconstruction process of the non-evolutionary compound wave
into evolutionary shocks. Also Falle & Komissarov (1997, 2001) do not reject the evol-
utionary condition and develop a shock-capturing scheme for evolutionary solutions
in MHD, However, since all the signals in this paper are essentially hydrodynamical,
we do not have to worry about evolutionarity for the set-up considered here.

In this paper, we solve the problem of regular shock refraction exactly, by developing
a stationary two-dimensional Riemann solver. Since a normal component of the
magnetic field suppresses the RMI, we investigate the effect of a perpendicular
magnetic field. The transition from slow–fast to fast–slow refraction is described in a
natural way, and the method can predict wave-pattern transitions. We also perform
numerical simulations using the grid-adaptive code AMRVAC (Keppens et al. 2003;
van der Holst & Keppens 2007).

In § 2, we formulate the problem and introduce the governing MHD equations. In
§ 3, we present our Riemann-solver-based solution strategy, and in § 4, more details
on the numerical implementation are described. Finally, in § 5, we present our results,
including a case study, the prediction of wave-pattern transitions, comparison to
experiments and numerical simulations and the effect of a perpendicular magnetic
field on the stability of the CD.

2. Configuration and governing equations
2.1. Problem set-up

As indicated in figure 1, the hydrodynamical problem of regular shock refraction is
parameterized by five independent initial parameters: the angle α between the shock
normal and the initial density discontinuity CD, the sonic Mach number M of the
impinging shock, the density ratio η across the CD and the ratios of specific heat γl

and γr on both sides of the CD. The shock refracts in three signals: a reflected signal
(R), a transmitted signal (T) and a shocked CD, where we allow both R and T to be
expansion fans or shocks. Adding a perpendicular magnetic field B also introduces
the plasma-β in the pre-shock region,

β =
2p

B2
, (2.1)

which is in our set-up a sixth independent parameter. As argued later, the shock
then still refracts in three signals (see figure 3), where we allow both R and T to be
expansion fans or shocks.

2.2. Stationary MHD equations

In order to describe the dynamical behaviour of ionized, quasi-neutral plasmas, we
use the framework of ideal MHD. We thereby neglect viscosity and resistivity and
suppose that the length scales of interest are much larger than the Debye length and
that there are enough particles in a Debye sphere (see e.g. Goedbloed & Poedts 2004).
As written out in conservative form and for our planar problem, the stationary MHD
equations are

∂

∂x
F +

∂

∂y
G = 0, (2.2)
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Figure 2. (a) A stationary shock, separating two constant states across an inclined planar
discontinuity. (b) The eigenvalues of the matrix A from (3.12) correspond to the refracted
signals.

where we introduced the flux terms

F =

(
ρvx, ρv2

x + p +
B2

2
, ρvxvy, vx

(
γ

γ − 1
p + ρ

v2
x + v2

y

2
+ B2

)
, vxB, vxγρ

)t

(2.3)

and

G =

(
ρvy, ρvxvy, ρv2

y + p +
B2

2
, vy

(
γ

γ − 1
p + ρ

v2
x + v2

y

2
+ B2

)
, vyB, vyγρ

)t

.

(2.4)
The applied magnetic field B = (0, 0, B) is assumed purely perpendicular to the flow
and the velocity v = (vx, vy, 0). Note that the ratio of specific heats γ is interpreted
as a variable rather than as an equation parameter, which is done to treat gases and
plasmas in a simple analytical and numerical way. The latter equation of the system
expresses that ∇ · (γρv) = 0. Also note that ∇ · B = 0 is trivially satisfied.

2.3. Planar stationary Rankine–Hugoniot condition

We allow weak solutions of the system, which are solutions of the integral form
of the MHD equations. The shock occurring in the problem set-up, as well as
those that later on may appear as R or T signals obey the Rankine–Hugoniot
conditions. In the case of two-dimensional stationary flows (see figure 2), where
the shock speed s =0, the Rankine–Hugoniot conditions follow from (2.2). When
considering a thin continuous transition layer in between the two regions, with

thickness δ, solutions of the integral form of (2.2) should satisfy limδ→0

∫ 2

1
((∂/∂x)F +

(∂/∂y)G) dl = 0. For vanishing thickness of the transition layer this yields the Rankine–
Hugoniot conditions as

− lim
δ→0

∫ 2

1

(
1

sinφ

∂

∂l
F − 1

cosφ

∂

∂l
G

)
dl = 0 (2.5)

�
[[F]] = ξ [[G]] , (2.6)

where ξ = tan φ and φ is the angle between the x-axis and the shock as indicated in
figure 2. The symbol [[ ]] indicates the jump across the interface.
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Figure 3. The wave pattern during interaction of the shock with the CD. The upper and
lower boundaries are rigid walls, while the left and right boundaries are open.

3. Riemann-solver-based solution strategy
3.1. Dimensionless representation

In this section we present how we initialize the problem in a dimensionless manner.
In the initial refraction phase, the shock will introduce three wave signals (R, CD, T),
and two new constant states develop, as schematically shown in figure 3. We choose
a representation in which the initial shock speed, s, equals its sonic Mach number,
M . We determine the value of the primitive variables in the post-shock region by
applying the stationary Rankine–Hugoniot conditions in the shock rest frame. In
absence of a magnetic field, we use a slightly different way to non-dimensionalize
the problem. Note ui = (ρi, vx,i , vy,i , ptot,i , Bi, γi), where the index i refers to the value
taken in the ith region (figure 3) and the total pressure

ptot = p +
B2

2
. (3.1)

In the HD case, we define p = 1 and ρ = γl in u1. Now all velocity components are
scaled with respect to the sound speed in this region between the impinging shock
and the initial CD. Since this region is initially at rest, the sonic Mach number, M ,
of the shock equals its shock speed, s. When the shock intersects the CD, the triple
point follows the unshocked contact slip line. It does so at a speed vtp = (M, M tan α).
Therefore we will solve the problem in the frame of the stationary triple point.
We will look for self-similar solutions in the frame u = u(φ), where all signals are
stationary. We now have that ṽx = vx − M and ṽy = vy − M tan α, where ṽ refers to
this new frame. From now on we will drop the tilde and only use this new frame.
We now have u1 = (γl, −M, −M tan α, 1, 0, γl)

t and u5 = (ηγl, −M, −Mtanα, 1, 0, γr)
t .

The Rankine–Hugoniot relations now immediately give a unique solution for u2,
namely

u2 =

(
(γ 2

l + γl)M
2

(γl − 1)M2 + 2
, − (γl − 1)M2 + 2

(γl + 1)M
, −Mtanα,

2γlM
2 − γl + 1

γl + 1
, 0, γl

)t

. (3.2)

In MHD, we non-dimensionalize by defining B = 1 and ρ = γlβ/2, in region 1. Again
all velocity components are scaled with respect to the sound speed in this region. We
now have that u1 = (γlβ/2, −M, −Mtanα, (β + 1)/2, 1, γl)

t , and from the definition
of η, u5 = (ηγlβ/2, −M, −Mtanα, (β + 1)/2, 1, γr )

t . The Rankine–Hugoniot relations
now give the following non-trivial solutions for u2:

u2 =

(
−γlβM

2ω
, ω, −Mtanα, p2 +

M2

2ω2
,

−M

ω
, γl

)t

, (3.3)
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where

p2 =
Aω + B

Cω + D
(3.4)

is the thermal pressure in the post-shock region. We introduced the coefficients

A = γl

(
β2

(
4γ 2

l M4 − 2γlM
2 − γl − 1

)
+ β

((
γ 2

l + 4γl − 5
)
M2 − 2

)
− γl + 2

)
, (3.5)

B = (γl − 1)M
(
β
(
M2

(
γ 2

l + 7γl

)
− 2γl + 4

)
− 2γl + 4

)
, (3.6)

C = 2γl(γl + 1)(β((γl − 1)M2 + 2) + 2), (3.7)

D = 4(γl + 1)(γl − 2)M. (3.8)

The quantity

ω = ω± ≡ −γl(γl − 1)βM2 + 2γl(β + 1) ±
√

W

2γl(γl + 1)βM
, (3.9)

is the normal post-shock velocity relative to the shock, with

W = β2M2
(
γ 3

l − γ 2
l

) (
M2(γl − 1) + 4

)
+ βγl(4M2

(
4 + γl − γ 2

l

)
+ 8γl) + 4γ 2

l . (3.10)

Note that ω must satisfy −M <ω < 0 to represent a genuine right-moving shock. We
choose the solution in which ω = ω+, since the alternative, ω = ω−, is a degenerate
solution in the sense that the hydrodynamical limit limβ→+∞ ω− = 0 does not represent
a right-moving shock.

3.2. Relations across a contact discontinuity and an expansion fan

Rewriting (2.2) in quasi-linear form leads to

ux +
(

F−1
u · Gu

)
uy = 0. (3.11)

In the frame moving with the triple point, we are searching for self-similar solutions,
and we can introduce ξ = y/x = tan φ, so that u = u(ξ ). Assuming that ξ �→ u(ξ )
is differentiable, manipulating (3.11) leads to Auξ = ξuξ . So the eigenvalues λi of A
represent tan φ, where φ is the angle between the refracted signals and the negative
x-axis. The matrix A is given by

A ≡ F−1
u Gu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vy

vx

ρvy

v2
x − c2

− ρvx

v2
x − c2

vy

vx

1

v2
x − c2

0 0

0
vxvy

v2
x − c2

− c2

v2
x − c2

−vy

ρ

1

v2
x − c2

0 0

0 0
vy

vx

1

ρvx

0 0

0 − ρc2vy

v2
x − c2

ρc2vx

v2
x − c2

vxvy

v2
x − c2

0 0

0 − Bvy

v2
x − c2

− Bvx

v2
x − c2

vy

vx

B

ρ

1

v2
x − c2

vy

vx

0

0 0 0 0 0
vy

vx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.12)

and its eigenvalues are

λ1,2,3,4,5,6 =

{
vxvy + c

√
v2 − c2

v2
x − c2

,
vy

vx

,
vy

vx

,
vy

vx

,
vy

vx

,
vxvy − c

√
v2 − c2

v2
x − c2

}
, (3.13)
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where the magnetosonic speed c ≡
√

v2
s + v2

a; the sound speed vs =
√

γp/ρ; and the

Alfvén speed va =
√

B2/ρ. Since A has three different eigenvalues, three different
signals will arise. When uξ exists and uξ 	= 0, i.e. inside of expansion fans, uξ is
proportional to a right eigenvector r i of A. Derivation of ξ = λi with respect to ξ

gives (∇uλi) · uλ = 1, and thus we find the proportionality constant, giving

uξ =
r i

∇uλi · r i
. (3.14)

While this result assumed continuous functions, we can also mention relations that
hold even across discontinuities like the CD. Denoting the ratio dui/r i = κ , it follows
that [l i · du] dx = λj dy = (l i · rj )κ = κδi,j , where l i and r i are respectively the left and
right eigenvectors corresponding to λi . Therefore, if i 	= j ,

[l i · du] dx=λj dy = 0. (3.15)

From these general considerations the following relations hold across the contact or
shear wave where the ratio dy/ dx = vy/vx:

vy dvx − vx dvy +
c
√

v2 − c2

ρv2
s

dptot = 0,

vy dvx − vx dvy − c
√

v2 − c2

ρv2
s

dptot = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.16)

Since v 	= c, otherwise all signals would coincide, it follows immediately that the total
pressure, ptot , and the direction of the streamlines vy/vx remain constant across the
shocked CD.

These relations across the CD allow to solve the full problem using an iterative
procedure. Inspired by the exact Riemann solver described in Toro (1999), we first
guess the total pressure p∗ across the CD; R is a shock when p∗ is larger than the
post-shock total pressure, and T is a shock only if p∗ is larger than the pre-shock total
pressure. Note that the jump in tangential velocity across the CD is a function of p∗,
and it must vanish. A simple Newton–Raphson iteration on this function [[vy/vx]](p

∗)
finds the correct p∗. We explain further in § 3.5 how we find the functional expression
and iterate to eventually quantify φR , φT , φCD and the full solution u(x, y, t). From
now on p∗ represents the constant total pressure across the CD.

Similarly, from the general considerations above, (3.15) gives that along

dy/ dx = (vxvy ± c
√

v2 − c2)/v2
x − c2 the following relations connect two states across

expansion fans:

dρ − 1

c2
dptot = 0,

vx dvx + vy dvy +
c2

ρv2
s

dptot = 0,

−ρ dptot + ptotρ dγ + ptotγ dρ = 0,

−B dptot + (γp + B2) dB = 0,

vy dvx − vx dvy ± c
√

v2 − c2

ρv2
s

dptot = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.17)



40 P. Delmont, R. Keppens and B. van der Holst

These can be written in a form which we exploit to numerically integrate the solution
through expansion fans, namely

ρi = ρe +
∫ p∗

ptot,e

1

c2
dptot ,

vx,i = vx,e +
∫ p∗

ptot,e

±vy

√
v2 − c2 − vxc

ρv2c
dptot ,

vy,i = vy,e +
∫ p∗

ptot,e

∓vx

√
v2 − c2 − vyc

ρv2c
dptot ,

Bi = Be +
∫ p∗

ptot,e

B

ρc2
dptot ,

pi = pe +
∫ p∗

ptot,e

v2
s

c2
dptot ,

γi = γe.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.18)

The indices i and e stand respectively for internal and external, the states at both
sides of the expansion fans. The upper signs hold for reflected expansion fans (i.e. of
type R), while the lower sign holds for transmitted expansion fans (i.e. of type T).

3.3. Relations across a shock

Since the system is nonlinear and allows for large-amplitude shock waves, the analysis
given thus far is not sufficient. We must include the possibility of one or both of the
R and T signals to be solutions of the stationary Rankine–Hugoniot conditions (2.6).
The solution is given by

ρi =

γ −1
γ+1

+ p∗

ptot,e

γ −1
γ+1

p∗

ptot,e
+ 1

ρe,

vx,i = vx,e − ξ∓(p∗ − ptot,e)

ρe(vx,eξ∓ − vy,e)
,

vy,i = vy,e +
p∗ − ptot,e

ρe(vx,eξ∓ − vy,e)
,

Bi =

γ −1
γ+1

+ p∗

ptot,e

γ −1
γ+1

p∗

ptot,e
+ 1

Be,

γi = γe,

pi = p∗ − B2
i

2
,

φR/T = atan(ξ+/−),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.19)

where

ξ± =
ve,xve,y ± ĉe

√
v2

e − ĉ2
e

v2
e,x − ĉ2

e

(3.20)

and

ĉ2
e =

(γ − 1)ptot,e + (γ + 1)p∗

2ρe

. (3.21)

Again the indices i and e stand respectively for internal and external, the states at
both sides of the shocks. The upper signs holds for reflected shocks, while the lower
sign holds for transmitted shocks.
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3.4. Shock refraction as a Riemann problem

We are now ready to formulate our iterative solution strategy. Since there exist two
invariants across the CD, it follows that we can do an iteration, if we are able to express
one invariant in function of the other. As mentioned earlier, we choose to iterate
on p∗ = ptot,3 = ptot,4 . This is the only state variable in the solution, and it controls
both R and T. We will write φR = φR(u2, p∗) and φT = φT (u5, p

∗), u3 = u3(u2, p
∗) and

u4 = u4(u5, p
∗). The other invariant should match too, i.e. (vx,3/vy,3) − (vx,4/vy,4) = 0.

Since u2 and u5 only depend on the input parameters, this last expression is a
function of p∗. Iteration on p∗ gives p∗ and φR = φR(p∗), φT = φT (p∗), u3 = u3(p

∗) and
u4 = u4(p

∗) give φCD = atan(vy,3/vx,3) = atan(vy,4/vx,4), which solves the problem.

3.5. Solution inside of an expansion fan

The only ingredient not yet fully specified by our description above is how to
determine the variation through possible expansion fans. This can be done once
the solution for p∗ is iteratively found, by integrating (3.18) till the appropriate
value of ptot . Notice that the location of the tail of the expansion fan is found

by tan(φtail ) = (vy,ivx,i ± ci

√
v2

i − c2
i )/v

2
x,i − c2

i , and the position of φhead is uniquely

determined by tan(φhead ) = (vy,evx,e ± ce

√
v2

e − c2
e )/v

2
x,e − c2

e . Inside an expansion fan
we know u(ptot ), so now we need to find ptot (φ), in order to find a solution for u(φ).
We decompose vectors locally in the normal and tangential directions, which are
respectively referred to with the indices n and t . We denote taking derivatives with
respect to φ as ′. Inside of the expansion fans we have some invariants given by (3.17).
The fourth of these immediately leads to p/Bγ as an invariant. Eliminating ptot from
dρ − (1/c2) dptot = 0 and −B dptot + (γp + B2) dB = 0 yields the invariant ρ/B , and
combining these two invariants tells us that the entropy S ≡ p/ργ is invariant. The
stationary MHD equations (2.2) can then be written in a 4 × 4 system for v′

n, v
′
t , p

′
tot

and ρ ′ as

v′
n + vt + vn

ρ ′

ρ
= 0,

vnvt + vnv
′
n +

p′
tot

ρ
= 0,

v2
n − vnv

′
t = 0,

c2ρ ′ − p′
tot = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.22)

where we dropped B ′ from the system, since it is proportional to ρ ′. Note that γ ′

vanishes. The system leads to the dispersion relation

v4
n − c2v2

n = 0, (3.23)

which in differential form becomes

4ρv3
nv

′
n + v4

nρ
′ − γ v2

np
′
tot − 2γptotvnv

′
n − (2 − γ )Bv2

nB
′ − (2 − γ )B2vnv

′
n = 0. (3.24)

Elimination of v′
n, ρ ′ and B ′ gives

dptot

dφ
= 2

vt

vn

c2 − 2v2
n

3v2
n + (γ − 2)c2

ρc2. (3.25)

This expression allows us to then complete the exact solution as a function of φ.
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Figure 4. The initial AMR grid at t = 0, for the example in § 5.1.

4. Implementation and numerical details
4.1. Details on the Newton–Raphson iteration

We can generally note that ptot,pre <ptot,post . This implies that the refraction has three
possible wave configurations: two shocks; a reflected rarefaction fan and a transmitted
shock; and two expansion fans. Before starting the iteration on [[vy/vx]](p

∗), we
determine the governing wave configuration. If [[vy/vx]](ε) and [[vy/vx]](ptot,5 − ε)
differ in sign, the solution has two rarefaction waves. If [[vy/vx]](ptot,5 + ε) and
[[vy/vx]](ptot,2 − ε) differ in sign, the solution has a transmitted shock and a
reflected rarefaction wave. In the other case, the solution contains two shocks in
its configuration. If R is an expansion fan, we take the guess

p∗
0 =

min

{
2ρev

2
x,e − (γe − 1)ptot,e

γ + 1
|e ∈ {2, 5}

}
+ ptot,5

2
(4.1)

as a starting value of the iteration. This guess is the mean of the critical value ptot,crit ,
which satisfies

v2
e,x − ĉ2(ptot,crit ) = 0 (4.2)

and p5, which is the minimal value for a transmitted shock. As we explain in § 5.3,
v2

2,x − ĉ2(ptot,crit ) = 0 is equivalent to v2
5 − ĉ2 = 0, and v2

5,x − ĉ2(ptot,crit ) = 0 is equivalent

to v2
2 − ĉ2 = 0 and thus a maximal value for the existence of a regular solution. If R

is a shock, we take (1 + ε̂)ppost , where ε̂ is 10−6, as a starting value for the iteration.
We use a Newton–Raphson interation: p∗

i+1 = p∗
i − f (p∗

i )/f
′(p∗

i ), where f ′(p∗) is
approximated numerically by (f (p∗

i + δ) − f (p∗
i ))/δ, where δ = 10−8. The iteration

stops when (p∗
i+1 − p∗

i )/p
∗
i < ε, where ε = 10−8.

4.2. Details on AMRVAC

AMRVAC (Keppens et al. 2003; van der Holst & Keppens 2007) is an AMR
code, solving equations of the general form ut + ∇ · F(u) = S(u, x, t) in any
dimensionality. The applications cover multi-dimensional HD, MHD, up to special
relativistic magnetohydrodynamic computations. In regions of interests, the AMR
code dynamically refines the grid. The initial grid of our simulation is shown in figure 4.
The refinement strategy is done by quantifying and comparing gradients. The AMR
in AMRVAC is of a block-based nature, where every refined grid has 2D children
with D being the dimensionality of the problem. Parallelization is implemented, using
Message Passing Interface (MPI). In all the simulations we use five refinement levels,
starting with a resolution of 24 × 120 on the domain [0, 1] × [0, 5], leading to an
effective resolution of 384×1940. The shock is initially located at x = 0.1, while the CD
is located at y = (x − 1)tanα. We used the fourth-order Runge–Kutta time-stepping,
together with a TVDLF scheme (see Yee 1989; Tóth & Odstrčil 1996) with Woodward
limiter on the primitive variables. The obtained numerical results were compared to
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Figure 5. For the reference case from Samtaney (2003), [[vy/vx]](p
∗): (a) all-shock solver;

(b) right-shock solver; (c) no-shock solver; (d ) shock ⇔ p∗ > pi . The all-shock solver is
selected.

and in agreement with simulations using other schemes, such as a Roe scheme and
the TVD-MUSCL scheme. The calculations were performed on FOUR processors.

4.3. Following an interface numerically

The AMRVAC implementation contains slight differences with the theoretical
approach. Implementing the equations as we introduced them here would lead
to excessive numerical diffusion on γ . Since γ is a discrete variable we know
γ (x, y, t) exactly, if we are able to follow the CD in time. Suppose thus that
initially a surface, separates two regions with different values of γ . Define a function
χ : D × �+ → � : (x, y, t) �→ χ(x, y, t), where D is the physical domain of (x, y).
Writing χ̃ (x, y) =χ(x, y, 0), we ask χ̃ to vanish on the initial contact and to be a
smooth function obeying

(i) γ = γl ⇔ χ̃(x, y) < 0,
(ii) γ = γr ⇔ χ̃(x, y) > 0.

We take in particular ±χ̃ to quantify the shortest distance from the point (x, y)
to the initial contact, taking the sign into account. Now we only have to note that
(χρ)t = χρt + ρχt = −χ∇ · (ρv) − (ρv · ∇)χ = −∇ · (χρv). The implemented system
is thus (2.2), but the last equation is replaced by (χρvx)x + (χρvy)y = 0. It is now
straightforward to show that we did not introduce any new signal. In essence, this is
the approach presented in Mulder, Osher & Sethian (1992).

5. Results
5.1. Fast–slow example solution

As a first hydrodynamical example, we set (α, β−1, γl, γr , η, M) = (π/4, 0, 7/5,

7/5, 3, 2), as originally presented in Samtaney (2003). In figure 5, the first three
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Figure 6. Solution to the fast–slow refraction problem, for the reference case from Samtaney
(2003). Notice that p and vx/vy remain constant across the shocked contact.

plots show [[vy/vx]](p
∗), when assuming a prescribed wave configuration, for all three

possible configurations. The last plot shows the actual function [[vy/vx]](p
∗), which

consists of piecewise copies from the three possible configurations in the previous
plots. The initial guess is p∗

0 = 4.111; the all-shock solver is selected; and the iteration
converges after three iterations with p∗ = 6.078. The full solution of the Riemann
problem is shown in figure 6.

5.2. Slow–fast example

In figure 7 we show the full solution of the HD Riemann problem, in which the
reflected signal is an expansion fan, connected to the refraction with parameters
(α, β−1, γl, γr , η, M) = (π/3, 0, 7/5, 7/5, 1/10, 10) from van der Holst & Keppens
(2007). The refraction is slow–fast, and R is an expansion fan. Note that p and
vy/vx remain constant across the CD, and the entropy S is an invariant across R.

5.3. Tracing the critical angle for regular shock refraction

Let us examine what the effect of the angle of incidence, α, is. Therefore we
get back to the example from § 5.1, (β−1, γl, γr , η, M) = (0, 7/5, 7/5, 3, 2), and let
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Figure 7. Solution to the slow–fast refraction problem from van der Holst & Keppens
(2007). Notice that S remains constant across R.
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Figure 8. (a) p∗(α). Note that for α < 0.61, there are no solutions for p∗: the refraction
is irregular. (b) The wave pattern for regular refraction. (c) For α = π/2, the problem is
one-dimensional, and there is no vorticity deposited on the interface. For decreasing α, the
vorticity increases. (d ) For regular refraction, |vy,5| > ĉ5.

α vary: α ∈ ]0, π/2]. Note that α = π/2 corresponds to a one-dimensional Riemann
problem. The results are shown in figure 8. Note that for regular refraction v2

y,5 > ĉ2
5.

We can understand this by noting that ξ± = (ve,xve,y ± ĉe

√
v2

e − ĉ2
e )/v

2
e,x − ĉ2

e =

((ve,xve,y ∓ ĉe

√
v2

e − ĉ2
e )/v

2
e,y − ĉ2

e )
−1 = ξ̂∓, which are the eigenvalues of G−1

u · Fu = (F−1
u ·

Gu)
−1. Note that we could have started our theory from the quasi-linear form

uy + (G−1
u · Fu)ux = 0 instead of (3.11). If we would have done so, we would

have found eigenvalues ξ̂ , which would correspond to 1/atanφ. Moreover, both the
eigenvalues, ξ+ and ξ−, have four singularities, namely ĉ2 ∈ {−vx,2, vx,2, −vy,5, vy,5}
for ξ− and ĉ5 ∈ {−vx,5, vx,5, −vy,2, vy,2} for ξ+, where thus ĉ2

5 = v2
5,y ⇔ ĉ2

2 = v2
2 and
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Figure 9. Schlieren plots of the density for (β−1, γl, γr , η,M) = (0, 7/5, 7/5, 3, 2) with varying
α. (a) α = π/4: a regular reference case. (b) α = 0.3: an irregular case.

ĉ2
2 = v2

y,2 ⇔ ĉ2
5 = v2

5 . It is now clear that it is one of the latter conditions that will be
met for αcrit . In the example, the transition to irregular refraction occurs at −vy,5 = ĉ5

and limα→αcrit
p∗ = (2γrηM2tan2(αcrit ) − γl + 1)/γl + 1 =6.67. Figure 9 shows Schlieren

plots for density from AMRVAC simulations for the reference case α = π/4, the
irregular case and α =0.3. In the regular case, all signals meet at the triple point,
while for α < αcrit = 0.61, the signals do not meet at one triple point; the triple point
forms a more complex structure and becomes irregular. The CD, originated at the
Mach stem, reaches the triple point through an evanescent wave, which is visible
by the contour lines. This pattern is called Mach reflection–refraction. Decreasing α

even more, the reflected wave transforms in a sequence of weak wavelets (see e.g.
Nouragliev et al. 2005). This pattern, of which the case α = 0.3 is an example, is
called concave-forwards irregular refraction. These results are in agreement with our
predictions.

5.4. Abd-El-Fattah and Henderson’s experiment

In 1978, a shock-tube experiment was performed by Abd-El-Fattah &
Henderson (1978 b). It became a typical test problem for simulations (see e.g.
Nouragliev et al. 2005) and refraction theory (see e.g. Henderson 1991). The
experiment concerns a slow–fast shock refraction at a CO2/CH4 interface. The
gas constants are γCO2

= 1.288, γCH4
= 1.303, μCO2

= 44.01 and μCH4
= 16.04. Thus

η = μCH4
/μCO2

= 0.3645. A very weak shock M = 1.12 is refracted at the interface
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and αtrans = 1.01. (b) φ(α).
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Figure 11. Exact solution for (α, β−1, γl, γr ,M) = (π/4, 0, 7/5, 7/5, 2) and a varying range of
the density ratio η. (a) For η < 1 we have p∗ <ppost = 4.5 and thus a reflected expansion fan;
for η > 1 we have p∗ > ppost = 4.5 and thus a reflected shock. (b) For η < 1, φT < π/2, and for
η > 1, φT > π/2.

under various angles. The von Neumann (1943) theory predicts the critical angle
αcrit = 0.97 and the transition angle αtrans = 1.01, where the reflected signal is irregular if
α < αcrit , a shock if αcrit <α <αtrans and an expansion fan if αtrans <α. This is in perfect
agreement with the results of our solution strategy as illustrated in figure 10. There we
show the pressure p∗ compared to the post-shock pressure ppost , as well as the angles
φR , φCD and φT for varying angle of incidence α. Irregular refraction means that not all
signals meet at a single point. The transition at αcrit is one between a regular shock–
shock pattern and an irregular bound precursor refraction, where the transmitted
signal is ahead of the shocked contact and moves along the contact at nearly the
same velocity. This is also confirmed by AMRVAC simulations. If the angle of
incidence, α, is decreased even further, the irregular pattern becomes a free precursor
refraction, where the transmitted signal moves faster than the shocked contact, and
reflects itself, introducing a side wave, connecting T to CD. When decreasing α even
further, another transition to the free precursor von Neumann refraction occurs.

5.5. Connecting slow–fast to fast–slow refraction

Another example of how to trace transitions by the use of our solver is done by
changing the density ratio η across the CD. Let us start from the example given in
§ 5.1, and let us vary the value of η.

Here we have (α, β−1, γl, γr , M) = (π/4, 0, 7/5, 7/5, 2). The results are shown in
figure 11. Note that, since ppost =4.5, we have a reflected expansion fan for fast–slow
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Figure 12. Density plots for (α, β−1, γl, γr ,M) = (π/4, 0, 7/5, 7/5, 2). (a) A slow–fast
refraction with η =0.8. Note that φT > π/2, and R is an expansion fan. (b) A fast–slow
refraction with η = 1.2. Note that φT < π/2, and R is a shock.

refraction and a reflected shock for slow–fast refraction. The transmitted signal plays
a crucial role in the nature of the reflected signal: for fast–slow refraction φT < π/2,
but for slow–fast refraction φT > π/2, and the transmitted signal bends forward. We
ran our solver for varying values of M and α, and for all HD experiments with γl = γr ,
we came to the conclusion that a transition from fast–slow to slow–fast refraction
coincides with a transition from a reflected shock to a reflected expansion fan, with
φT = π/2. This result agrees with AMRVAC simulations. In figure 12, a density plot
is shown for η = 1.2 and η = 0.8.

5.6. Effect of a perpendicular magnetic field

In general, the MHD equations result in the following jump conditions across a CD:⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎣

p +
B2

t

2

Bn

BnBt

vtBn

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦ = 0. (5.1)

It follows, that if the component Bn of the magnetic field normal to the shock front
is non-vanishing, a case we did not consider so far, the MHD equations do not allow
for vorticity deposition on a CD, and the RMI is suppressed (Wheatley et al. 2005).
The remaining question is what the effect of a purely tangential magnetic field is,
where the field is perpendicular to the shock front and thus acts to increase the total
pressure and the according flux terms.

Also note that it follows from (3.18) and (3.19) that B/ρ is invariant across shocks
and rarefaction fans. Therefore, B/ρ can only jump across the shocked and unshocked
CDs, and B cannot change sign.

Revisiting the example from § 5.1, we now let the magnetic field vary. Figure 13
shows [[vt ]](β) across the CD. Also for η = 0.8, making it a slow–fast problem,
[[vt ]](β) is shown. First notice that no shocks are possible for β < 0.476, since ω+

would not satisfy ω+ > −M . Manipulating (3.9), we know that this is equivalent to

β > βmin ≡ 2

γl(M2 − 1)
. (5.2)

This relation is also equivalent to c1 > M , which means that the shock is sub-
magnetosonic, compared to the pre-shock region. Figure 14 shows density plots
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(a) β−1 = 0. The hydrodynamical RMI causes the interface to roll up. (b) β−1 = 1/2. Although
the initial amount of vorticity deposited on the interface is smaller than in the HD case,
the wall-reflected signals pass the wall vortex and interact with the CD, causing the RMI to
appear. (c) β−1 = 1. The shock is very weak, and the interface remains stable.
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Figure 15. The reference problem from Samtaney (2003) with varying β . (a) The dependence
of φCD on β . Note that limβ→βmin

φCD = π/4 = α, since this is the limit to infinitely weak shocks:
limβ→βmin

At = 0. (b) The vorticity deposition in the shocked contact scales as the Atwood
number and limβ→βmin

[[vt ]]/At = 1.

from AMRVAC simulations at t = 2.0, for (α, γl, γr , η, M) = (π/4, 7/5, 7/5, 3, 2) with
varying β−1. First note that the interface is instable for the HD case. Increasing β−1

decreases the shock strength. For β−1 the interface remains stable, but for β−1 = 1, the
shock is very weak: the Atwood number At = 0.17, and the interface remains stable.

Shown in figure 13 is the vorticity across the CD. In the limit case of this minimal
plasma-β the interface is stable, for both fast–slow and slow–fast refraction. As
expected, in the fast–slow case, the reflected signal is an expansion fan, while it is a
shock in the fast–slow case. Also note that the signs of the vorticity differ, causing
the interface to roll up clockwise in the slow–fast regime and counterclockwise in the
fast–slow regime. When decreasing the magnetic field, the vorticity on the interface
increases in absolute value. This can be understood by noticing that the limit case of
minimal plasma-β is also the limit case of very weak shocks. This can for example
be understood by noting that limβ→βmin

φCD = α (see figure 15 ). A convenient way to
measure the strength of a shock is by use of its Atwood number

At =
ρ2 − ρ1

ρ2 + ρ1

. (5.3)

Figure 15 shows the jump across the shocked contact [[vt ]], scaled to the shock
Atwood number. Note that in the limit case of very weak shocks the Atwood number
equals the jump in tangential velocity across the CD, in dimensional notation:

lim
β→βmin

[[vt ]]
vs,1

At
= 1. (5.4)

When keeping the Atwood number constant, the shocks’ sonic Mach number is
given by

M =
1 + At

1 − At

√
(2 − 2γ − γβ)At2 + (2γβ + 2γ )At − γβ − 2

(γ 2β)At2 + (γ 2β − γβ)At − γβ
(5.5)

=

√
(At + 1)((γβ + 2γ − 2)At − (γβ + 2))

γβ(1 − At)(γAt + 1)
. (5.6)
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Note that in the limit for weak shocks

lim
At→0

M =

√
γβ + 2

γβ
, (5.7)

which is equivalent to (5.2), and in the limit for strong shocks, M → ∞. Figure 16 shows
the deposition of vorticity on the shocked contact, for a constant Atwood number. We
conclude that under constant Atwood number, the effect of a perpendicular magnetic
field is small: stronger perpendicular magnetic field increases the deposition of
vorticity on the shocked contact slightly. This is confirmed by AMRVAC simulations
(see figure 17).
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6. Conclusions
We developed an exact Riemann-solver-based solution strategy for shock refraction

at an inclined density discontinuity. Our self-similar solutions agree with the early
stages of nonlinear AMRVAC simulations. We predict the critical angle αcrit for
regular refraction, and the results fit with numerical and experimental results. Our
solution strategy is complementary to the von Neumann theory and can be used to
predict full solutions of refraction experiments, and we have shown various transitions
possible through specific parameter variations. For perpendicular fields, the stability
of the contact decreases slightly with decreasing β under constant Atwood number.
We will generalize our results for arbitrary uniform magnetic fields, where up to seven
signals arise. In this case we will search for non-evolutionary solutions, involving
intermediate shocks, and for alternative evolutionary solutions, where the appearance
of intermediate shocks can be avoided by including compound waves. We will
investigate shock refraction involving initial slow, intermediate and fast shocks and
qualify the effect on the refraction.

The K.U.Leuven high-performance computing cluster VIC has been used for all
numerical simulations in this work.
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